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We have previously described a novel crankshaft support system that can be used when measuring and
testing crankshafts. Here, we extend our studies on this system using mathematical models (basic poly-
harmonic, spline-based polyharmonic, and monoharmonic functions) to identify the optimal conditions
for supporting geometric measurements of large crankshafts. The obtained results improved the accuracy
of this system and provided alternative solutions by minimizing shaft deflection during measurements. It
was proposed and confirmed that variable reaction forces in flexible crankshaft supports can be mapped
using a monoharmonic model with a good fit to the source data. At various selected crankshaft positions,
finite element analysis software was used to determine the reaction forces, for which three different
mathematical models were tested. The usefulness of each individual model was discussed in terms of
the complexity and accuracy of mapping the source values.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The machinery and equipment used in ship engine rooms often
contain large components that are characterized by low and vari-
able rigidity and high susceptibility to flexural deformation. These
components include the crankshafts of the power engine pistons of
a ship’s main propulsion, auxiliary machines, and generator sets
[1]. These are mostly shafts of diesel piston power engines, com-
monly also used in other types of haulage and transport (rail, road),
agriculture and industrial construction. As highlighted in the liter-
ature [2], when it comes to machining, crankshafts are the most
labour-consuming engine components with the longest manufac-
turing cycle. Machining is difficult due to the complex shape of a
shaft, its low rigidity, high requirements for geometric precision
and surface roughness, as well as the necessity of balancing the
shaft and the interoperational and final evaluation of a shaft’s geo-
metric condition.

The precision of a crankshaft’s manufacture strongly affects the
proper functioning of the crank-and-piston system and, hence, of
the entire working machine. At the same time, it has been esti-
mated that crankshafts account for 20–25% of the cost of the entire
machine [2].

For this type of machinery components, there are high require-
ments of the material [3–5] and of the geometric precision of the
manufacturing process defined in the product specification [6,7].
For this reason, the modern production process requires continu-
ous control of the quality of the manufactured surface. Full and
accurate assessment of the geometric condition of the product
can only be guaranteed if the appropriate measurement methods
and techniques are used. These should be feasible in regard to
metrology and apparatus; the accuracy of which must be adaptable
to the tolerances given in the specification.

Current methods to assess the geometry of large shafts are lim-
ited to linear and angular measurements, including journal diame-
ters, measurements of deflection of crank webs, assessing the
condition of the top layer of journals and cranks, and surface
roughness measurements. However, the above-mentioned proce-
dures do not permit a complete and correct assessment of the intri-
cate geometry of a shaft, mainly due to the elastic deformation
caused by the assumed support conditions. Existing solutions do
not guarantee accurate measurements due to errors resulting from
elastic deformation during measurements [6,8].

In overhaul docks and repair workshops, reference measure-
ment methods are often used to measure the deviation and shape
contours of large and heavy crankshafts, with the measured object
being fixed in V-blocks [9–14]. Reference methods are based on

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2020.107543&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.measurement.2020.107543
http://creativecommons.org/licenses/by/4.0/
mailto:k.nozdrzykowski@am.szczecin.pl
mailto:l.chybowski@am.szczecin.pl
mailto:l.dorobczynski@am.szczecin.pl
https://doi.org/10.1016/j.measurement.2020.107543
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement


2 K. Nozdrzykowski et al. /Measurement 155 (2020) 107543
evaluating the position of the points of the measured profile in
relation to one or more points of that profile. In shafts used in
medium-speed engines (for generating sets, traction motors,
etc.), four V-blocks are typically used for fixation, while for large
shafts in slow-speed engines (rated speed below 450 rpm), more
V-blocks are needed to fix and support the shaft [15,16]. In this
case, the procedure is a series of separate measurements (mostly
performed using universal measuring equipment) [17–19], which
cover linear and angular dimensions and the radial and axial
run-out (whip) of journals. In addition, a final criterion used to
assess shaft geometry accuracy is measuring the deformation of
crank webs, which is called a deflection measurement [20–22].

The measurement procedures of large-size crankshafts show
significant gaps concerning comprehensive measurements of geo-
metric deviation, i.e. those in both the shape and the position of the
axes. They are based on measurements that have been used for
many years and whose accuracy has not been updated to match
the increasing manufacturing precision expected of modern crank-
shafts. These measures account for the presence of elastic deforma-
tion of the shaft, and thus web deflection measurements are
necessary to determine whether the crankshaft is within accept-
able workable limits.

Significant deficiencies in end-to-endmeasurements of geomet-
ric deviations in large crankshafts can especially be seen in their
practical adaptation and their use in repair or overhaul facilities,
such as repair docks or ship engine manufacturing plants [13,23].
A number of studies have shown that to accurately assess the geo-
metric condition of a shaft, suitable measurement conditions are
essential, including support conditions that eliminate any deflec-
tion and, consequently, any elastic deformation of the crankshaft
under the influence of its own weight and those caused by its geo-
metric deviation [24–26]. Elimination of this deflection is only pos-
sible if there is constant contact between the supports and the
main journals of the shaft. Such conditions cannot be guaranteed
by only supporting the shaft with a few selected main journals
or with an uncontrolled set of rigid supports that maintain a fixed
height position. Unintentional pre-deflection can occur in the posi-
tion of the main journals, which generates elastic deformation
Fig. 1. Deflection in the center of the crankshaft, assuming zero deflection at the outerm
four rigid supports evenly spaced along the shaft; B – the shaft resting on eight suppor
outermost journals.
when the shaft rotates [27]. An example is shown in Fig. 1. This
state causes the geometric deviation and elastic deformation,
which are coupled with each other, to interact and the geometric
evaluation of the shaft becomes unreliable.

To ensure correct measurement conditions, it is necessary to
support the main journals of the shaft with a set of supports that
compensate for its deflection and elastic deformation under the
influence of its own weight as well as those caused by any geomet-
ric deviation of the shaft. The values of the reaction forces at the
contact between the support heads and the main journals should
guarantee zero deflection at the journals when rotating the sup-
ported shaft through a given angle [27].

2. Methods and materials

2.1. An innovative measuring methodology for evaluating the
geometry of a flexibly supported shaft

This study aimed to improve the precision of methods for mea-
suring the geometry of large-size crankshafts. The results,
described herein, underpin the development of an innovative mea-
surement methodology with a controllable exertion of reaction
forces by the supports, based on the concept of the so-called flex-
ible shaft support [25]. Fig. 2 shows a test rig constructed on the
basis of the authors’ concept of the measuring system, equipped
with flexible support for the measured object. The idea of a flexible
support was detailed in one of the authors’ previous papers [27].

The use of flexible supports makes it possible, in practice, to
eliminate any elastic deflection of a shaft. Regardless of the possi-
ble geometric deviation, the elastic supports, which exert pre-set
reaction forces, act as flexible elements that compensate for any
possible elastic deflection of the shaft. The purpose of the supports
is to exert the pre-set reaction forces that guarantee zero deflection
at the individual main journals. The required reaction forces at the
contact of the support heads and journals are determined in
advance for the selected shaft positions from the FEM strength cal-
culations [26,28]. In addition, the elimination of the deflection on
the main journals relieves the centres fixing the shaft. As a result,
ost journals [prepared by the authors based on Ref. [27]]: A – crankshaft resting on
ts loaded with a uniform reaction force of 1080.5 N ensuring zero deflection at the



Fig. 2. Prototype rig for measuring geometric deviation of large-size crankshafts during the measurement of a shaft of the Buckau-Wolf R8VD-136 engine.
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the centres act as unloaded elements that securely retain the shaft.
Measuring under these conditions corresponds to a non-reference
scenario with the examined object being fixed in the centres. The
axis determined by the centres is thereby a baseline for the mea-
surements of the condition of the geometric shaft. This baseline
is then used as the axis of reference for determining geometric
deviation.

The elastic support system is made up of a set of elastic sup-
ports, the number, and arrangement of which depend on the num-
ber and arrangement of the main journals of the shaft. These V-
block supports are self-adjusting, flexible and are the rolling-
type. They do not limit the possible displacement of any main jour-
nals resulting from an inaccurately manufactured shaft. They exert
a reactive force in order to eliminate shaft deflection, while at the
same time they offset any possible displacement caused by any
geometric deviation. The variable pressures and corresponding
forces in the actuators of the relieving supports are continuously
adjusted by means of precision proportional current-controlled
reduction valves. Each flexible support exerts a force that depends
on the crank angle. These forces are calculated in advance using the
programs dedicated to strength analysis of machine components,
implementing the finite element method, assuming zero deflection
in the main journals of the shaft [29,30].

However, changing the value of the forces by adjusting the pres-
sure of the medium that drives the relieving support actuators
does not ensure that the required relieving forces are set unam-
biguously. The actual forces exerted by the pressure-controlled
supports depend on a number of factors that determine the charac-
teristics of the actuators themselves, such as resistance to friction,
the type of medium, the shape of the actuator elements, the mate-
rials used and the actuator’s structural design. Therefore, in the
developed system, additional strain gauge force transducers were
used that were situated between the heads and actuators of the
flexible supports. In this way, the necessary force is the parameter
that controls the pressure in the reduction valves. The pressure in
the actuators of the flexible supports is thus controlled by the force
and adjusted to the required relief force, determined using finite
element analysis (FEA) software. The shaft’s axial fixation is pro-
vided by a set of two ball-ended centres, one of which is stationary
and the other is resiliently mounted, parallel to the axis. This
ensures that the shaft is in continuous contact with the locating
centres, regardless of any elastic deformation in the shaft and that
the centres automatically adjust the pressure they provide.

The measuring system is a trolley, equipped with a tripod and a
measuring sensor, which moves along the guides parallel to the
axis of the main journals of the shaft being measured. The system
is equipped with shaft rotation control, which allows continuous
data recording and transfers it to the computer’s memory. The
value of the reaction forces that eliminate elastic shaft deflection
is pre-determined and then replaced by mathematical formulas.
These forces are continuously monitored through precise, propor-
tional current-controlled reduction valves, which cooperate in a
feedback system with force sensors that measure the actual reac-
tion forces at the contact points between the support heads and
main journals. The computer checks the entire measurement pro-
cess, regulates the values of the reaction forces, records the data
and analyses the results.

2.2. Measurement procedure and a proposed improvement

This section provides a brief description of the measurement
method. Detailed information regarding the concept of a flexible
shaft support can be found in Ref. [27]. Assessing the geometric
condition of large crankshafts using the developed measuring sys-
tem consists of the following procedure:

1. Determining the shaft fixing method. It is possible to fix the
shaft with the faces of centres or with two fixed V-blocks sup-
porting the outermost main journals.

2. Determining the basic parameters of the measuring system.
At this stage, the V-block opening angles, the trolley position,
the measuring sensor and the sensor’s stylus orientation rela-
tive to the measured outline are selected.

3. Determining parameters of the shaft’s flexible support sys-
tem. At this stage, the number of flexible V-block supports to
be deployed is determined. The FEM methods are then used to
determine the reaction forces to create the support conditions
that are most favourable for the elimination of any shaft
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deflection and elastic deformation. Due to the time-consuming
FEM calculations, the values of the required reaction forces
from all the flexible supports are determined for the selected
angular shaft positions, e.g. every 15 angular degrees. The last
step at this stage is the development of a mathematical model
for the calculated values of the reaction forces, which will
make it possible to exert and continuously monitor the
changes in the reaction forces when the shaft rotates, for
any angular position.

4. Determining the kinematic parameters of the measurement
process. This stage determines the shaft’s required angular
speed during measurement and the sampling rate of the mea-
suring system.

5. Collecting the data. This is an essential stage in the measure-
ment procedure, in which measurements are made according
to the predefined plan. The results of the measurements are
recorded by a data acquisition computer system.

6. Processing measurement data and drawing conclusions. This
stage is computer-aided and consists of:

- selection of the reference elements for the estimation of the
geometric deviation being sought,

- determination of the geometric deviation being sought (har-
monic analysis of the roundness profiles; presentation of the
measured profiles on graphs in the Cartesian and polar coor-
dinate system and as a discrete amplitude spectrum; presen-
tation of the relative positions of the cylindrical surface
arrangement in a graphical form on a 3D graph),

- statistical data processing, estimation of the errors,
- the last step, which is to print the measurement report on

the geometric condition of the crankshaft and to draw
conclusions.

FEA software can calculate the theoretical forces for any angular
position of the shaft. Therefore, these calculations can be per-
formed when the crank angle (CA) is increased by a constant value,
between 0� and 360�, which is a full rotation. However, the inten-
sity of the calculations increases considerably as the angle grada-
tion interval is shortened and, in practice, a reasonable angle
step, e.g. 15�CA, must be adopted for individual measurements
[31,32]. For intermediate shaft positions, the values of the reaction
forces are based on the adopted mathematical model. As a result of
testing the prototype unit, the authors have established that the
efficiency of the presented measurement procedure can be
improved by automating the mathematical model’s development
process. This model represents the changes in the reaction forces
at the flexible supports when the shaft rotates. Therefore, the
authors undertook to develop a relatively simple model with a high
mapping accuracy.

It was hypothesized that a monoharmonic model would pro-
vide a precise mapping of the calculated forces. The authors
assumed in this study that a good fit will be provided by a function
with a determination coefficient R2 > 0.99. To test this hypothesis,
it was necessary to develop polyharmonic models, refine them to
spline-based polyharmonic models, and then determine the domi-
nant harmonic that was necessary to develop a monoharmonic
model. The results were verified by determining the accuracy of
the model’s fitting to the initial data and calculating the maximum
relative percentage error.

2.3. Data and assumptions of the analysis

Analysis was carried out using a steel crankshaft of a Buckau-
Wolf R8VD-136 Engine. The view of the engine is shown in Fig. 3
and its basic specifications and the crankshaft specifications are
given in Appendix 1 (Table A1,A2)
Table 1 shows examples of the reaction forces determined for
the tested object, which was the above-mentioned crankshaft of
the medium-speed engine of a ship’s main propulsion unit. They
were calculated using the FEA theory implemented in Midas NFX
2019 R1 (MSC Software Corporation, Newport Beach, CA, USA).

The results are presented graphically and were comprehen-
sively analyzed. The findings showed that the distribution of the
zero-deflection forces at the individual journals, in the interval of
0–360�CA, presented in the polar coordinate system, is approxi-
mately an ellipse (if magnified, it appears slightly deformed and
resembling the number eight). This corresponds to a sinusoid-
like function in the Cartesian coordinate system. According to the
interpolation theory, the models used in the harmonic analysis of
signals may be used to describe these characteristics [7,12,33–
35]. The R(u) reaction force at the support can thus be given in gen-
eral terms as the function:

R uð Þ ¼ R0 þ
Xk

n¼1

ARncosnuþ
Xk

n¼1

BRnsinnu ð1Þ

where: ARn, BRn – components of the amplitudes (N) of the consec-
utive nth harmonics of the reaction forces. k – the number of har-
monics adopted in the analysis; n – the number of the subsequent
harmonic; R0 – the averaged reaction force for a full rotation of
the shaft (N); u – the angular position of the shaft (�CA).

The components of the individual harmonics are given as the
following relationships, commonly used in numerical calculations
[12]:

ARn ¼ 2
nj

Xnj

j¼1
rjcosn

2pj
nj

ð2Þ

BRn ¼ 2
nj

Xnj

j¼1
rjsinn

2pj
nj

ð3Þ

where: nj – the number of intervals adopted for discretisation; rj –
the discretised values of the function DR(u);

The Eq. (1) can also be written as:

R uð Þ ¼ R0 þ
Xk

n¼1

CRnsin nuþuRnð Þ ð4Þ

where: Ro – the averaged, calculated reaction force for a full rotation
of the shaft, CRn – the amplitude of the n-th harmonic of the func-
tion of the changes in the reaction forces, uRn – the phase shift of
the n-th harmonic of the function of the changes in the reaction
forces.

The amplitudes CRn of the individual harmonics and their phase
shifts are described by the following equations:

CRn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
Rn þ B2

Rn

q
ð5Þ

tgnuRn ¼ BRn

ARn
ð6Þ

In this analysis, the polyharmonic model described by Eq. (4)
was used as the initial model. Therefore, in the first step, the indi-
vidual amplitude values and the initial phases for the first six har-
monics were determined from the forces calculated from the FEA
method, using fast Fourier transform (FFT) [36–38]. Estimated val-
ues of coefficients of the Fourier series expansion of periodic func-
tions can be computed in Matlab 2019a (MathWorks, Natick, MA,
USA) using the fft function [39]. The results of the fft function must
be scaled (Appendices 2–4). A polyharmonic model was built from
the obtained amplitudes and phases of individual harmonics. The
implementation of the algorithm in the Matlab R2019a environ-
ment was presented in Appendix 2 (code polyharmonic.m).



Table 1
Calculated values of the reaction forces at journals that ensure zero deflection in the journals when the crank angle changes in steps of 15�.

Crank angle (�CA)

0 15 30 45 60 75 90 105

Journal no. Reaction force (N)

1 731.615 727.478 737.458 758.88 786.004 811.566 828.719 832.865
2 988.499 1005.430 989.138 943.975 882.046 819.940 774.299 757.354
3 871.124 823.759 822.936 868.881 949.282 1042.600 1123.820 1171.180
4 1166.330 1237.240 1253.230 1210.01 1119.160 1005.030 898.194 827.286
5 847.885 796.422 795.302 844.823 931.716 1032.700 1120.710 1172.170
6 1093.010 1123.700 1108.890 1052.540 969.753 882.713 814.743 784.052
7 852.035 799.741 797.223 845.152 930.689 1030.910 1118.970 1171.260
8 1142.220 1212.93 1231.620 1193.290 1108.200 999.160 895.380 824.670
9 988.146 944.118 933.953 960.373 1016.300 1086.750 1152.840 1196.870
10 603.466 613.507 614.588 606.418 591.187 572.977 556.666 546.624
Total 9284 9284 9284 9284 9284 9284 9284 9284

Crank angle (�CA)

120 135 150 165 180 195 210 225

Journal no. Reaction force (N)

1 822.890 801.465 774.332 748.764 731.615 727.478 737.458 758.880
2 773.648 818.819 880.757 942.865 988.499 1005.430 989.138 943.975
3 1172.000 1126.050 1045.650 952.341 871.124 823.758 822.937 868.881
4 811.302 854.525 945.373 1059.500 1166.330 1237.240 1253.230 1210.010
5 1173.290 1123.770 1036.880 935.898 847.885 796.422 795.302 844.823
6 798.867 855.215 938.001 1025.040 1093.010 1123.700 1108.89 1052.540
7 1173.78 1125.850 1040.310 940.090 852.035 799.742 797.222 845.152
8 805.978 844.311 929.399 1038.440 1142.220 1212.930 1231.620 1193.290
9 1207.040 1180.620 1124.690 1054.240 988.146 944.118 933.953 960.373
10 545.544 553.713 568.944 587.155 603.466 613.507 614.588 606.418
Total 9284 9284 9284 9284 9284 9284 9284 9284

Crank angle (�CA)

240 255 270 285 300 315 330 345

Journal no. Reaction force (N)

1 786.004 811.566 828.719 832.865 822.890 801.465 774.332 748.764
2 882.046 819.940 774.299 757.353 773.649 818.819 880.757 942.864
3 949.282 1042.600 1123.820 1171.190 1172.000 1126.050 1045.650 952.341
4 1119.160 1005.030 898.194 827.285 811.302 854.525 945.373 1059.500
5 931.716 1032.700 1120.710 1172.170 1173.290 1123.770 1036.880 935.899
6 969.753 882.713 814.743 784.053 798.867 855.216 938.001 1025.040
7 930.689 1030.910 1118.970 1171.260 1173.78 1125.850 1040.310 940.090
8 1108.200 999.160 895.380 824.670 805.977 844.311 929.399 1038.440
9 1016.300 1086.750 1152.840 1196.870 1207.040 1180.620 1124.690 1054.240
10 591.187 572.977 556.666 546.624 545.544 553.713 568.944 587.155
Total 9284 9284 9284 9284 9284 9284 9284 9284

Fig. 3. The view of the Buckau-Wolf R8VD-136 Engine.
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Next, in order to increase the model’s accuracy in mapping the
forces determined by the FEA program, an enhanced polyharmonic
model, based on spline interpolation, was developed [40]. This type
of interpolation is a numerical method involving the approxima-
tion of an unknown function with polynomials. For an interval
<a,b> containing all m + 1 interpolation nodes, p subintervals are
created: <t0,t1>, <t1,t2>, . . ., <tr-1,tr > such that a = t0 < t1 < . . . < tr = b
and in each of them the function is interpolated with an interpolat-
ing polynomial (usually of low degree). The ‘‘merging” of these
polynomials creates a spline. Spline S is a function that interpolates
the function R if:

R uið Þ ¼ S uið Þdlaui; i 2 0;1; . . . ;mf g ð7Þ
where: ui – the interpolation node of the R function R.

In order to build a spline-based polyharmonic model, the spec-
trum was identified by the FFT method to determine the ampli-
tudes and phases of the individual harmonics. This led to the
development of a model with precise mapping. The implementa-
tion of the algorithm coded in the Matlab environment is shown
in Appendix 3 (code splines.m).

Analyses of the amplitude spectra for polyharmonic models,
presented later in this paper (Sections 3.1 and 3.2), has shown that
the second harmonic is important for the mapping of data calcu-
lated from the FEA program. Therefore, it is recommended to use
the monoharmonic function, as follows [41]:

R uð Þ ¼ R0 þ CR2sin 2uþuR2ð Þ ð8Þ
where: CR2 – the amplitude of the 2nd harmonic of the function of
the changes in the reaction forces; uR2 – the phase shift of the 2nd
harmonic of the function of the changes in the reaction forces.

Assuming that the reaction forces calculated from the FEA soft-
ware at the support of a given journal for successive shaft
positions:

UFEA ¼ u1;u2; . . . ;um½ � ð9Þ
are expressed in the form of a vector:

RFEA ¼ R1;R2; . . . ;Rm½ � ð10Þ
then, the individual elements of the Eq. (8) will be [41]:

R0 ¼
Pm

i¼1Ri

m
ð11Þ

CR2 ¼ max R1;R2 . . .Rmf g �min R1;R2 . . .Rmf g
2

ð12Þ

uR2 ¼ arcsin
Ri � R0

CR2

� �
� 2ui ð13Þ

where: ui – the angle, for which the phase shift is determined;

Ri � R0

CR2
2 �1;1h i

When determining phase shift, it is important that the variation
of the model coincides with the variation of the curve, determined
by connecting the points indicated by the FEA program. In other
words, both characteristics should increase for a shaft position that
corresponds to the angle of ui. For the determined values listed in
Table 1, for even-numbered journals, ui = 0�CA, and for odd-
numbered journals, ui = 45�CA, so this relationship takes the form
[41]:

� for even-numbered journals:

uR2 ¼ arcsin
Ri � R0

CR2

� �
ð14Þ
� for odd-numbered journals:

uR2 ¼ arcsin
Ri � R0

CR2

� �
� p

2
ð15Þ

The amplitudes and phase shifts of the individual harmonics
were calculated using the Matlab environment. A sample code
implementing the authors’ algorithm is provided in Appendix 4
(code monoharmonic.m).
3. Results and discussion

3.1. Basic polyharmonic model

Initially, the polyharmonic model given by the Eq. (4) was ana-
lyzed. The amplitudes and phase shifts determined using FFT for
the data listed in Table 1 are presented in Tables 2 and 3,
respectively.

The determined amplitudes and phase shifts of the individual
harmonics were used to build the basic polyharmonic model based
on the Eq. (4). A comparison of the model with the values calcu-
lated using the FEA program, using journal no. 1 in the Cartesian
and polar coordinate systems as an example, is shown in Figs. 4
and 5, respectively. The graphical presentation of the results shows
a relatively poor fitting of the model to the results of the FEA
calculations.

For the proposed model, indicators of its goodness-of-fit to the
source data were determined. The values of the maximal relative
error d and the coefficient of determination R2 for the proposed
models are presented in Table 4.

The maximum relative error was nearly 15%, and the coefficient
of determination for the worst-fitting journal no. 8 slightly
exceeded 0.81. The function’s goodness of fit did not satisfy the
authors’ conditions (it is less than 0.99). The poor fit of the model
can be explained by the small number of interpolation nodes:
360�CA/15�CA = 24. Accuracy of this model can be improved by
increasing the number of points, e.g. doubling it (measurement
every 7.5�CA), but this means doubling the calculation time with
the FEA software. Another alternative is to increase the number
of harmonics, but this would result in the additional complexity
of the model, therefore, the requirement of the development of
the simplest possible model would not be satisfied.

3.2. Spline-based polyharmonic model

In order to increase the function’s goodness of fit to the data cal-
culated using the FEA software, the authors carried out spline-
interpolation for the data compiled in Table 3. The spectrum of
such a characteristic can be determined with much greater preci-
sion than in the case described in Section 3.1, e.g. for data calcu-
lated with increments of 1�CA. For the presented case, the
amplitudes and phase shifts determined by the FFT method for
the data listed in Table 1 are presented in Tables 5 and 6,
respectively.

The determined amplitudes and phase shifts of the individual
harmonics were used to build the enhanced polyharmonic model
(the spline-based polyharmonic function) given by Eqs. (4) and
(7). A comparison of the model with the values calculated using
the FEA program, on the example of journal no. 1 in the Cartesian
and polar coordinate systems is shown in Figs. 6 and 7, respec-
tively. The graphical presentation of the results gives a good illus-
tration of the good fitting of the model to the results of the FEA
calculations.

For the proposed spline-based polyharmonic model, the indica-
tors of its goodness-of-fitting to the source data were determined.



Table 2
Amplitude values for the individual harmonics of the reaction forces in the polyharmonic model.

Harmonic

0 1 2 3 4 5 6

Journal no. Amplitude (N)

1 778.23 5.14 53.18 4.21 1.86 1.17 0.87
2 885.68 11.52 123.94 10.29 4.76 3.12 2.37
3 992.42 14.53 178.20 16.59 8.32 5.77 4.55
4 1037.63 16.39 218.86 21.44 11.05 7.79 6.20
5 978.84 15.7 192.83 17.97 9.02 6.26 4.94
6 959.44 15.21 169.85 14.65 6.99 4.69 3.63
7 980.16 15.45 191.31 17.93 9.03 6.28 4.96
8 1023.74 15.38 209.84 20.78 10.77 7.61 6.07
9 1067.20 10.09 135.15 13.26 6.84 4.82 3.84
10 581.00 2.75 34.76 3.3 1.68 1.17 0.93

Table 3
Phase shifts for the individual harmonics of the reaction forces in the polyharmonic model.

Harmonic

0 1 2 3 4 5 6

Journal no. Phase (�CA)

1 90.00 265.52 261.61 78.65 76.69 76.10 76.27
2 90.00 81.80 75.16 250.79 248.59 248.27 249.22
3 90.00 251.56 240.12 55.22 54.41 55.92 58.85
4 90.00 65.19 52.61 228.64 229.00 231.54 235.35
5 90.00 251.46 239.99 55.1 54.29 55.83 58.79
6 90.00 78.71 70.2 245.26 243.31 243.48 245.12
7 90.00 250.83 239.18 54.36 53.67 55.33 58.39
8 90.00 63.51 59.83 227.18 227.82 230.62 234.61
9 90.00 244.97 232.37 48.44 48.81 51.42 55.25
10 90.00 69.23 57.22 232.6 232.2 234.14 237.43

Fig. 4. Fit of the basic polyharmonic model to results obtained using the FEA calculation presented in Cartesian coordinates.
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The values of the maximal relative error d and the coefficient of
determination R2 for the proposed models are presented in Table 7.

The maximum relative error does not exceed 0.8% and the coef-
ficient of determination is greater than 0.996. The fitting of the
function is therefore very good and meets the authors’ criterion
of R2 > 0.99.

The disadvantage of this model is the need to use advanced
numerical methods to determine the splines and to perform the



Table 4
The indicators for the fitting of the basic polyharmonic model.

Journal no. d (%) R2 (–)

1 3.09921 0.91971
2 6.85213 0.91745
3 8.60053 0.91331
4 11.73850 0.91208
5 9.41059 0.91325
6 8.83714 0.91594
7 9.29673 0.91313
8 14.9606 0.81513
9 6.09244 0.91205
10 3.09639 0.91275

Table 5
Amplitudes for the individual harmonics of the reaction forces in the spline-based
polyharmonic model.

Harmonic

0 1 2 3 4 5 6

Journal no. Amplitude (N)

1 780.03 0.37 53.06 0.25 0.11 0.07 0.05
2 881.70 0.84 124.12 0.62 0.30 0.19 0.14
3 997.11 1.06 180.25 1.02 0.52 0.35 0.27
4 1032.65 1.20 222.53 1.23 0.69 0.48 0.37
5 983.91 1.15 195.07 1.10 0.56 0.38 0.29
6 954.27 1.11 170.64 0.89 0.43 0.29 0.21
7 985.12 1.13 193.65 1.10 0.56 0.39 0.29
8 1019.15 1.13 213.61 1.28 0.68 0.47 0.36
9 1070.26 0.74 137.44 0.82 0.43 0.30 0.23
10 580.13 0.20 35.23 0.20 0.10 0.07 0.06

Fig. 5. Fit of the basic polyharmonic model to the results obtained using the FEA
calculation presented in polar coordinates.

Table 6
Phase shifts for the individual harmonics of the reaction forces in the spline-based
polyharmonic model.

Harmonic

0 1 2 3 4 5 6

Journal no. Phase (�CA)

1 90.00 258.40 247.38 57.31 46.12 40.57 33.75
2 90.00 74.56 60.77 229.37 219.52 213.00 207.01
3 90.00 244.01 225.58 33.86 26.64 21.27 17.33
4 90.00 57.55 38.10 207.47 201.33 197.02 194.25
5 90.00 243.95 225.45 33.78 26.34 21.05 17.26
6 90.00 71.39 55.74 223.83 215.11 208.32 203.30
7 90.00 243.30 224.64 33.05 25.65 20.56 16.98
8 90.00 55.85 3635 206.05 200.01 196.14 193.48
9 90.00 237.33 217.87 27.28 20.78 16.89 14.11
10 90.00 61.67 42.68 211.33 204.14 199.45 196.20
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FFT analysis. Therefore, it is necessary to use the appropriate soft-
ware, which in this case is the Matlab environment.
3.3. Monoharmonic model

The authors’ aim was to reduce the complexity of the model and
to avoid performing complex numerical calculations such as the
spline interpolation and the use of FFT. To this end, the possibility
of using a monoharmonic model given by Eq. (8) and whether it
could give highly accurate results (R2 should be greater than
0.99) was verified. For the case presented, the values of the ampli-
tudes and phase shifts determined using the Eqs. (11)–(13) are pre-
sented in Table 8.

The determined values of the amplitudes and phase shifts were
used to build a monoharmonic model (2nd-harmonic-based func-
tion) given by Eq. (8). A comparison of the model with the values
calculated using the FEA program, on the example of journal no.
1 in the Cartesian and polar coordinate systems is shown in Figs. 8
and 9, respectively. As in the case of the spline-based polyhar-
monic model, the presentation of the obtained results also, in this
case, gives a good illustration of the good fitting of the model to the
FEA calculation results.

For the proposed monoharmonic model, the indicators of its
goodness-of-fitting to the source data were determined. The values
of the maximal relative error d and the coefficient of determination
R2 for the proposed models are presented in Table 9.

The results of the model fitting analysis showed that the maxi-
mum relative error does not exceed 1.53% and the determination
coefficient for all the journals is greater than 0.995. Therefore,
the requirement of a high goodness-of-fit is satisfied. The proposed
model is relatively simple, as it requires only three parameters to
be determined for each journal. Moreover, in order to calculate
these parameters, it is not necessary to use numerical analysis, to
determine splines or to use FFT spectral analysis.
3.4. Models comparison

A comparison of the three models is given in Table 10. The max-
imum relative error dmax and minimum determination factor R2

min

are shown for each function. The results indicate that the best fit
was provided by the spline-based model, followed by the mono-
harmonic model, while the least accurate was the polyharmonic
model. The monoharmonic model is the easiest to apply because
it does not require a spectrum analysis to describe the individual
harmonics of the force change function in reactions calculated
using FEA software.

The data presented in Table 10 confirm the hypothesis that
there is a monoharmonic model that ensures that the calculated
forces are precisely mapped. This model is based on the 2nd har-
monic of the function of reaction forces, which was determined
using FEA software. Moreover, the proposed monoharmonic model
provides a better fit to the source data than the basic polyharmonic
model.



Fig. 6. Fitting the spline-based polyharmonic model to the results obtained using the FEA calculation presented in Cartesian coordinates.

Fig. 7. Fitting the spline-based polyharmonic model to results obtained using the
FEA calculation presented in polar coordinates.

Table 7
The indicators for the fitting of the spline-based polyharmonic model.

Journal no. d (%) R2 (–)

1 0.22325 0.99603
2 0.46924 0.99959
3 0.57398 0.99956
4 0.74539 0.99956
5 0.63372 0.99956
6 0.61061 0.99957
7 0.62718 0.99956
8 0.33531 0.99989
9 0.40756 0.99955
10 0.20089 0.99956

Table 8
Values of the amplitudes and phase shifts for the monoharmonic model.

Journal no. R0 (N) CR2 (N) uR2 (�CA)

1 778.23 52.69 �111.54
2 885.68 124.35 55.99
3 992.41 174.53 �135.05
4 1037.62 220.96 35.62
5 978.84 188.99 �135.16
6 959.44 169.82 51.86
7 980.16 188.27 �135.81
8 1023.73 212.82 33.83
9 1067.20 136.54 �141.47
10 581.00 34.52 40.59
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4. Conclusions

Analyses of the test results showed unequivocally that the
adopted apparatus was suitable for developing a mathematical
model that is a record of the variation of reaction forces. One of
the fundamental conditions necessary to ensure a shaft’s actual
geometric condition is assessed correctly is precisely monitoring
these forces while measuring geometric deviations of the crank-
shafts. To this end, the proposed system, equipped with a flexible
support system, can be used.

Both the spline-based polyharmonic model and the monohar-
monic model provide the required mapping of the source data.
The spline-based polyharmonic model is more accurate, but in
order to implement it, requires more demanding computational
power. For this reason, the monoharmonic model is a more attrac-
tive alternative.

Given the extremely good fit of the spline-based polyharmonic
model and the monoharmonic model, it is reasonable to assume
that a 15�CA angle is a reasonable angular increment to measure
the geometry of the crankshaft’s main journal.

The innovation of the approach described here lies in its ability
to determine the reaction forces in supports at intermediate angu-
lar shaft positions, i.e. between the positions for which the values
of reaction forces in supports are known from FEA analysis. This
approach will enable the control of the supports using the FEA
analysis data. Conducting FEA analyses for crankshaft positions
determined using elevated density may yield more accurate
results, but this will increase the calculation time. Future develop-



Fig. 8. Fitting the monoharmonic model to results obtained using the FEA calculation presented in Cartesian coordinates.

Fig. 9. Fitting the monoharmonic model to results obtained using the FEA
calculation presented in polar coordinates.

Table 9
Indicators for fitting the monoharmonic model.

Journal no. d (%) R2 (–)

1 0.49793 0.99868
2 1.39617 0.99594
3 0.93476 0.99993
4 1.19474 0.99938
5 1.00205 0.99993
6 1.52899 0.99767
7 0.94840 0.99988
8 1.10268 0.99934
9 0.68980 0.99906
10 0.33620 0.99968

Table 10
Accuracy comparison of analysed interpolation functions.

Model dmax (%) R2
min (–)

Basic polyharmonic 14.9606 0.81513
Spline-based polyharmonic 0.74539 0.99603
Monoharmonic 1.52899 0.99594
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ment of this measuring system includes using the data and the
mathematical model by the computer-based automatic control
for the crankshaft support. This may be developed based on the
input data from the analyses carried out using the FEA software.
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Appendix

1. Basic data of the analysed crankshaft and the engine for which it
was designed
Table A1
The basic specifications of the crankshaft of a Buckau-Wolf R8VD-136 engine.

Parameter Description

Crankshaft length 3630 mm
Crankshaft weight 946.3 kg
Number of crank journals 8
Number of main journals 10
Crank journal diameter 144 mm
Main journal diameter 149 mm
Crank web dimensions 252 mm � 358 mm (oval)
Poison’s ratio of the material 0.3
Young’s modulus of the material 210 GPa

Table A2
The basic technical and operational data of a Buckau-Wolf R8VD-136 Engine.

Parameter Description

Number of cylinders 8
Cylinder bore 240 mm
Piston stroke 360 mm
Cylinder working volume 16.290 dm3

Compression chamber volume 1.205 dm3

Nominal effective power 300 HP (220 kW)
Nominal speed 360 rpm
Compression ratio 14.4
Nominal mean effective pressure 5.75 bar (0.575 MPa)
Maximum combustion pressure 52 bar (5.2 MPa)
Compression pressure 36 bar (3.6 MPa)
Mean piston speed 4.32 m/s
Nominal specific fuel oil consumption 175 ± 18 g/HPh (238 ± 24 g/kWh)
Dry engine mass 8500 kg
Equipment mass 1000 kg
2. Basic polyharmonic model calculation code
% polyharmonic.m
clear,clc,close all
FF = [731.615 727.478 737.458 758.88 786.004 811.566

828.719 832.865 822.89 801.465 774.332 748.764 731.615
727.478 737.458 758.88 786.004 811.566 828.719 832.865
822.89 801.465 774.332 748.764 731.615

988.499 1005.43 989.138 943.975 882.046 819.94 774.299
757.354 773.648 818.819 880.757 942.865 988.499
1005.43 989.138 943.975 882.046 819.94 774.299 757.353
773.649 818.819 880.757 942.864 988.499

871.124 823.759 822.936 868.881 949.282 1042.6 1123.82
1171.18 1172 1126.05 1045.65 952.341 871.124 823.758
822.937 868.881 949.282 1042.6 1123.82 1171.19 1172
1126.05 1045.65 952.341 871.124

1166.33 1237.24 1253.23 1210.01 1119.16 1005.03 898.194
827.286 811.302 854.525 945.373 1059.5 1166.33 1237.24
1253.23 1210.01 1119.16 1005.03 898.194 827.285
Basic polyharmonic model calculation code (continued)

% polyharmonic.m
811.302 854.525 945.373 1059.5 1166.33

847.885 796.422 795.302 844.823 931.716 1032.7 1120.71
1172.17 1173.29 1123.77 1036.88 935.898 847.885
796.422 795.302 844.823 931.716 1032.7 1120.71 1172.17
1173.29 1123.77 1036.88 935.899 847.885

1093.01 1123.7 1108.89 1052.54 969.753 882.713 814.743
784.052 798.867 855.215 938.001 1025.04 1093.01 1123.7
1108.89 1052.54 969.753 882.713 814.743 784.053
798.867 855.216 938.001 1025.04 1093.01

852.035 799.741 797.223 845.152 930.689 1030.91 1118.97
1171.26 1173.78 1125.85 1040.31 940.09 852.035 799.742
797.222 845.152 930.689 1030.91 1118.97 1171.26
1173.78 1125.85 1040.31 940.09 852.035

1142.22 1212.93 1231.62 1193.29 1108.2 999.16 895.38
824.67 805.978 844.311 929.399 1038.44 1142.22 1212.93
1231.62 1193.29 1108.2 999.16 895.38 824.67 805.977
844.311 929.399 1038.44 1142.22

988.146 944.118 933.953 960.373 1016.3 1086.75 1152.84
1196.87 1207.04 1180.62 1124.69 1054.24 988.146
944.118 933.953 960.373 1016.3 1086.75 1152.84 1196.87
1207.04 1180.62 1124.69 1054.24 988.146

603.466 613.507 614.588 606.418 591.187 572.977 556.666
546.624 545.544 553.713 568.944 587.155 603.466
613.507 614.588 606.418 591.187 572.977 556.666
546.624 545.544 553.713 568.944 587.155 603.466];

[w,N] = size(FF);
path = ‘D:\danekn\’;
ext = ‘.jpg’;
for k = 1:w % main loop
close all
F = FF(k,:); % next journal
F = F0;
% model A0 + A2*sin(2*fir + fir2)

fi = [0:15:360]0;
fir = fi*pi/180;% w radianach
% Application of FFT
% Analysis

Widmo = fft(F);
A = abs(Widmo)*2/N;A(1) = A(1)/2;
Nmax = 6;
Faza = pi/2-angle(Widmo(1:Nmax + 1)0);
if k==1
model02 = [k*ones(Nmax + 1,1),[0:Nmax]0,A(1:Nmax +
1),Faza0*180/pi];

else
model02 = [model02;[k*ones(Nmax + 1,1),[0:Nmax]0,A(1:
Nmax + 1),Faza0*180/pi]];

end % if
figure(2)
subplot(2,1,1)
stem([0:Nmax],A(1:Nmax + 1),‘ro’),grid on
ylabel(‘Amplitude (N)’),xlabel(‘Harmonic (–)’)
title(strcat(‘Journal no. ’,num2str(k)))
subplot(2,1,2)
stem([0:Nmax],Faza(1:Nmax + 1)*180/pi,‘ro’),grid on
ylabel(‘Phase (deg)’),xlabel(‘Harmonic (–)’)
filename = strcat(path,‘pic_’,num2str(k),‘_2’,ext);
% zapis figure(2)
saveas(gcf,filename,‘jpg’)
% Syntesis
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model_poli = A(1)*ones(N,1);
for K = 2:Nmax + 1

model_poli = model_poli + A(K)*sin((K-1)*fir + Faza(K));
end % for K
figure(3)
D2 = F-model_poli;
q2 = sum(abs(D2))/N;
if k==1,Q2 = q2;else Q2 = [Q2;q2];end
plot(fir,F,‘b-o’,fir,model_poli,‘r+-‘,fir,q2,‘ko-’)
legend(‘FEA calculation’,‘Poliharmonic model’,‘\Delta’,‘Loca
tion’,‘Best’),grid on
title(strcat(‘Journal no. ’,num2str(k)))
filename = strcat(path,‘pic_’,num2str(k),‘_3’,ext);
% zapis figure(3)
saveas(gcf,filename,‘jpg’)

end % for k
disp(‘Poliharmonic model’)
disp(‘Journal Harmonic Amplitude (N) Phase (deg)’)
disp(model02)

3. Spline-based polyharmonic model calculation code

%splines.m
clear,clc
G = [731.615 727.478 737.458 758.88 786.004 811.566

828.719 832.865 822.89 801.465 774.332 748.764 731.615
727.478 737.458 758.88 786.004 811.566 828.719 832.865
822.89 801.465 774.332 748.764 731.615

988.499 1005.43 989.138 943.975 882.046 819.94 774.299
757.354 773.648 818.819 880.757 942.865 988.499
1005.43 989.138 943.975 882.046 819.94 774.299 757.353
773.649 818.819 880.757 942.864 988.499

871.124 823.759 822.936 868.881 949.282 1042.6 1123.82
1171.18 1172 1126.05 1045.65 952.341 871.124 823.758
822.937 868.881 949.282 1042.6 1123.82 1171.19 1172
1126.05 1045.65 952.341 871.124

1166.33 1237.24 1253.23 1210.01 1119.16 1005.03 898.194
827.286 811.302 854.525 945.373 1059.5 1166.33 1237.24
1253.23 1210.01 1119.16 1005.03 898.194 827.285
811.302 854.525 945.373 1059.5 1166.33

847.885 796.422 795.302 844.823 931.716 1032.7 1120.71
1172.17 1173.29 1123.77 1036.88 935.898 847.885
796.422 795.302 844.823 931.716 1032.7 1120.71 1172.17
1173.29 1123.77 1036.88 935.899 847.885

1093.01 1123.7 1108.89 1052.54 969.753 882.713 814.743
784.052 798.867 855.215 938.001 1025.04 1093.01 1123.7
1108.89 1052.54 969.753 882.713 814.743 784.053
798.867 855.216 938.001 1025.04 1093.01

852.035 799.741 797.223 845.152 930.689 1030.91 1118.97
1171.26 1173.78 1125.85 1040.31 940.09 852.035 799.742
797.222 845.152 930.689 1030.91 1118.97 1171.26
1173.78 1125.85 1040.31 940.09 852.035

1142.22 1212.93 1231.62 1193.29 1108.2 999.16 895.38
824.67 805.978 844.311 929.399 1038.44 1142.22 1212.93
1231.62 1193.29 1108.2 999.16 895.38 824.67 805.977
844.311 929.399 1038.44 1142.22

988.146 944.118 933.953 960.373 1016.3 1086.75 1152.84
1196.87 1207.04 1180.62 1124.69 1054.24 988.146
944.118 933.953 960.373 1016.3 1086.75 1152.84 1196.87
1207.04 1180.62 1124.69 1054.24 988.146

603.466 613.507 614.588 606.418 591.187 572.977 556.666
546.624 545.544 553.713 568.944 587.155 603.466
613.507 614.588 606.418 591.187 572.977 556.666
546.624 545.544 553.713 568.944 587.155 603.466];
[w,N] = size(G);
fi = [0:15:360];fir = fi*pi/180;
firr = [0:360]*pi/180;
path = ‘D:\danekn\’;
ext = ‘.jpg’;
for k = 1:10% mail loop
close all
F = G(k,:);
FF = spline(fir,F,firr);
figure(1)
plot(fir,F,‘bo-’,firr,FF,‘r:’),grid on
xlabel(‘Crank angle (deg)’)
ylabel(‘Force (N)’)
legend(‘FEA calculation’,‘Spline interpolstion’,‘Location’,‘Bes
t’),grid on
title(strcat(‘Journal no. ’,num2str(k)))
filename = strcat(path,‘slide_’,num2str(k),‘_1’,ext);

% write of figure(1)
saveas(gcf,filename,‘jpg’)
Widmo = fft(FF);
N = length(FF);
A = abs(Widmo)*2/N;A(1) = A(1)/2;
Faza = pi/2-angle(Widmo0);
Nmax = 7;
figure(2)
subplot(2,1,1)
stem([0:Nmax � 1],A(1:Nmax),‘ro’),grid on
title(strcat(‘Journal no. ’,num2str(k)))
ylabel(‘Amplitude (N)’),xlabel(‘Harmonic (–)’)
subplot(2,1,2)
stem([0:Nmax � 1],Faza(1:Nmax)*180/pi,‘ro’),grid on
ylabel(‘Phase (deg)’),xlabel(‘Harmonic (–)’)
filename = strcat(path,‘slide_’,num2str(k),‘_2’,ext);

% write of figure(2)
saveas(gcf,filename,‘jpg’)
% [[0:Nmax-1]0,A(1:Nmax)0,Faza(1:Nmax)*180/pi]
Row = [k*ones(Nmax + 1,1),[0:Nmax]0,A(1:Nmax + 1)0,Faza(
1:Nmax + 1)*180/pi];
if k==1,model03 = Row; else model03 = [model03;Row]; end
% if

% Syntesis:
model_poli = A(1)*ones(1,N);
for K = 2:Nmax + 1

model_poli = model_poli + A(K)*sin((K-1)*firr + Faza(K));
end % for K
figure(3)
plot(firr,FF,‘b-’,firr,model_poli,‘r-’,firr,FF-model_poli,‘k-’)
legend(‘Spline interpolation’,‘Poliharmonic model’,‘\Delta’,‘L
ocation’,‘Best’),grid on
title(strcat(‘Journal no. ’,num2str(k)))
filename = strcat(path,‘slide_’,num2str(k),‘_3’,ext);

% write of figure(3)
saveas(gcf,filename,‘jpg’)
D3 = FF-model_poli;
q3 = sum(abs(D3))/length(firr);
if k==1,Q3 = q3;else Q3 = [Q3;q3];end % if
figure(4)
plot(firr*180/pi,D3,‘k-’),grid on
xlabel(‘Crank angle (deg)’)
title(strcat(‘Journal no. ’,num2str(k)))
ylabel(‘\Delta’)
filename = strcat(path,‘slide_’,num2str(k),‘_4’,ext);

% zapis figure(4)
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saveas(gcf,filename,‘jpg’)
end % for k
disp(‘Journal Harmonic (–) Amplitude (N) Phase (deg)’)
disp(model03)
disp(‘fitting factor Q3:’)
Q3 = [[1:10]0,Q3];
disp(‘Journal Q3’)
disp(Q3)

4. Monoharmonic model calculation code

% monoharmonic.m
clear,clc,close all
FF = [731.615 727.478 737.458 758.88 786.004 811.566

828.719 832.865 822.89 801.465 774.332 748.764 731.615
727.478 737.458 758.88 786.004 811.566 828.719 832.865
822.89 801.465 774.332 748.764 731.615

988.499 1005.43 989.138 943.975 882.046 819.94 774.299
757.354 773.648 818.819 880.757 942.865 988.499
1005.43 989.138 943.975 882.046 819.94 774.299 757.353
773.649 818.819 880.757 942.864 988.499

871.124 823.759 822.936 868.881 949.282 1042.6 1123.82
1171.18 1172 1126.05 1045.65 952.341 871.124 823.758
822.937 868.881 949.282 1042.6 1123.82 1171.19 1172
1126.05 1045.65 952.341 871.124

1166.33 1237.24 1253.23 1210.01 1119.16 1005.03 898.194
827.286 811.302 854.525 945.373 1059.5 1166.33 1237.24
1253.23 1210.01 1119.16 1005.03 898.194 827.285
811.302 854.525 945.373 1059.5 1166.33

847.885 796.422 795.302 844.823 931.716 1032.7 1120.71
1172.17 1173.29 1123.77 1036.88 935.898 847.885
796.422 795.302 844.823 931.716 1032.7 1120.71 1172.17
1173.29 1123.77 1036.88 935.899 847.885

1093.01 1123.7 1108.89 1052.54 969.753 882.713 814.743
784.052 798.867 855.215 938.001 1025.04 1093.01 1123.7
1108.89 1052.54 969.753 882.713 814.743 784.053
798.867 855.216 938.001 1025.04 1093.01

852.035 799.741 797.223 845.152 930.689 1030.91 1118.97
1171.26 1173.78 1125.85 1040.31 940.09 852.035 799.742
797.222 845.152 930.689 1030.91 1118.97 1171.26
1173.78 1125.85 1040.31 940.09 852.035

1142.22 1212.93 1231.62 1193.29 1108.2 999.16 895.38
824.67 805.978 844.311 929.399 1038.44 1142.22 1212.93
1231.62 1193.29 1108.2 999.16 895.38 824.67 805.977
844.311 929.399 1038.44 1142.22

988.146 944.118 933.953 960.373 1016.3 1086.75 1152.84
1196.87 1207.04 1180.62 1124.69 1054.24 988.146
944.118 933.953 960.373 1016.3 1086.75 1152.84 1196.87
1207.04 1180.62 1124.69 1054.24 988.146

603.466 613.507 614.588 606.418 591.187 572.977 556.666
546.624 545.544 553.713 568.944 587.155 603.466
613.507 614.588 606.418 591.187 572.977 556.666
546.624 545.544 553.713 568.944 587.155 603.466];

[w,N] = size(FF);
path = ‘D:\danekn\’;
ext = ‘.jpg’;
for k = 1:w % main loop
close all
F = FF(k,:); % next journal
F = F0;
% model A0 + A2*sin(2*fir + fir2)

fi = [0:15:360]0;
fir = fi*pi/180;% in radians
A0 = mean(F);% constant component
amin = min(F);
amax = max(F);
A2 = (amax � amin)/2;% Amplitude of 2nd harmonic
%phase of 2nd harmonic
fir2 = asin((F(1) � A0)/A2);
if fir2 < 0,fir2 = fir2+(3*pi/2);end % correction for fir2 < 0
model = A0 + A2*sin(2*fir + fir2);
figure(1),plot(fi,F,bo-’,fi,model,‘r*-’,fi,F-model,‘ko-’)
legend(‘FEA calculation’,‘2nd harmonic model’,‘\Delta’,‘Loca
tion’,‘Best’)
grid on
title(strcat(‘Journal no. ’,num2str(k)))
filename = strcat(path,‘pic_’,num2str(k),‘_1’,ext);
format bank
D1 = F-model;
q1 = sum(abs(D1))/N;
if k==1,model01 = [k,A0,A2,fir2*180/pi,q1];Q1 = q1;

else model01 = [model01;[k,A0,A2,fir2*180/pi,q1]];Q1 = [Q1;
q1];

end % if
xlabel(‘Crank angle (deg)’)
ylabel(strcat(‘Force(N)0,num2str(k),0)’));

% write figure(1)
saveas(gcf,filename,‘jpg’)
end % for k
disp(‘Monoharmonic model’)
disp(‘Journal A0 A2 Phase [deg] Q1’)
disp(model01)
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[3] K. Gawdzińska, L. Chybowski, W. Przetakiewicz, R. Laskowski, Application of
FMEA in the quality estimation of metal matrix composite castings produced
by squeeze infiltration, Arch. Metall. Mater. 62 (2017) 2171–2182, https://doi.
org/10.1515/amm-2017-0320.
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